perm filename INDUCT.AX[W79,JMC] blob
sn#409229 filedate 1979-01-04 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 DECLARE PREDPAR P(ORDINAL) Q(NATNUM)
C00004 ENDMK
C⊗;
DECLARE PREDPAR P(ORDINAL) Q(NATNUM);
DECLARE INDVAR M M0 M1 M2 N N1 N2 ε NATNUM;
DECLARE INDVAR X X0 X1 Y Y0 Y1 ε ORDINAL;
DECLARE PREDCONST <(NATNUM,NATNUM) [L←450,R←475];
AXIOM INDUCTION:
∀N.(∀M.(M < N ⊃ P(M)) ⊃ P(N)) ⊃ ∀N.P(N);;
DECLARE OPCONST SUCC(NATNUM) = NATNUM;
DECLARE PREDCONST LESS(ORDINAL,ORDINAL) [L←450,R←475];
DECLARE OPCONST LPOW(ORDINAL) = NATNUM;
DECLARE OPCONST LCOEF(ORDINAL) = NATNUM;
DECLARE OPCONST TAIL(ORDINAL);
AXIOM TAIL:
∀X.((NULL TAIL X ∨ ISORDINAL TAIL X) ∧ ¬(NULL TAIL X ∧ ISORDINAL TAIL X))
∀X.(ISORDINAL TAIL X ⊃ LPOW TAIL X < LPOW X
;;
AXIOM LESS:
∀X Y.(LPOW X < LPOW Y ⊃ X LESS Y)
∀X Y.(LPOW X = LPOW Y ∧ LCOEF X < LCOEF Y ⊃ X LESS Y)
∀X Y.(LPOW X = LPOW Y ∧ LCOEF X = LCOEF Y ∧ NULL TAIL X
∧ NULL TAIL Y ⊃ X = Y)
∀X Y.(LPOW X = LPOW Y ∧ LCOEF X = LCOEF Y ∧ NULL TAIL X
∧ ¬(NULL TAIL Y) ⊃ X LESS Y)
∀X Y.(LPOW X = LPOW Y ∧ LCOEF X = LCOEF Y ∧ ISORDINAL TAIL X
∧ ISORDINAL TAIL Y ⊃ (X LESS Y ≡ TAIL X LESS TAIL Y)
∀X Y.(X LESS Y ∨ X = Y ∨ Y LESS X)
;;